Элементы комбинаторики


Правило умножения (основной принцип)



страница2/27
Дата29.04.2018
Размер336 Kb.
#265
Название файлаKombinVeroyatn.doc
Учебное заведениеПермский Государственный Технический Университет
1   2   3   4   5   6   7   8   9   ...   27
Правило умножения (основной принцип): если из некоторого ко­нечного множества первый объект (элемент ) можно выбрать спо­собами и после каждого такого выбора второй объект (элемент ) мож­но выбрать способами, то оба объекта ( и ) в указанном порядке можно выбрать способами.

Этот принцип, очевидно, распространяется на случай трех и более объектов.



Пример 1. Сколько трехзначных чисел можно составить из цифр 1, 2,3,4,5, если: а) цифры не повторяются? б) цифры могут повторятся?

Решение. Имеется 5 различных способов выбора цифры для первого места (слева в трехзначном числе). После того как первое место занято, на­пример, цифрой 2, осталось четыре цифры для заполнения второго места. Для заполнения третьего места остается выбор из трех цифр. Следовательно, согласно правилу умножения имеется 5 . 4 . 3 = 60 спо­собов расстановки цифр, т. е. искомое количество трехзначных чисел есть 60. (Вот некоторые из этих чисел: 243, 541, 514, 132, ... ) Понятно, что если цифры могут повторяться, то трехзначных чисел 5 . 5 . 5 = 125. (Вот некоторые из них: 255, 333, 414, 111, ... )

Правило суммы. Если некоторый объект можно выбрать спосо­бами, а объект можно выбрать способами, причем первые и вторые способы не пересекаются, то любой из указанных объектов ( или ), можно выбрать способами.

Это правило распространяется на любое конечное число объектов.



Пример 2. В студенческой группе 14 девушек и 6 юношей. Сколь­кими способами можно выбрать, для выполнения различных заданий, двух студентов одного пола?

Решение. По правилу умножения двух девушек можно выбрать 14·13 = 182 способами, а двух юношей - 6·5 = 30 способами. Следует выбрать двух студентов одного пола: двух студенток или двух юношей. Соглас­но правилу сложения таких способов выбора будет 182 + 30 = 212 .

Решение вероятностных (и не только их) задач часто облегчается, если использовать комбинаторные формулы. Каждая из них опреде­ляет число всевозможных исходов в некотором опыте (эксперименте), состоящем в выборе наудачу элементов из различных элементов рассматриваемого множества.

Существуют две схемы выбора элементов из исход­ного множества: без возвращения (без повторений) и с возвращением (с повторением). В первом случае выбранные элементы не возвращаются обратно; можно отобрать сразу все элементов или последовательно отбирать их по одному. Во второй схеме выбор осуществляется поэле­ментно с обязательным возвращением отобранного элемента на каждом шаге. Мы рассмотрим только первую схему.

Пусть дано множество, состоящее из различных элементов.



Размещениями из элементов по элементов на­зываются соединения, каждое из которых состоит из элементов, взятых из данных элементов. При этом размещения отличаются друг от друга как самими элементами, так и их порядком.

Число размещений из элементов по элементов обозначается символом и вычисляется по формуле



(1)

или


, где , . (2)

Для составления размещения надо выбрать элементов из множества с элементами и упорядочить их, т. е. заполнить мест элементами множества. Первый элемент можно выбрать способами, т. е. на первое место можно поместить любой из элементов. После этого второй элемент можно выбрать из оставшихся элементов способами. Для выбора третьего элемента имеется способа, четвертого - способа, и, наконец, для последнего -го элемен­та - способов. Таким образом, по правилу умножения, существует способов выбора элементов из данных элементов, т. е. .





Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   ...   27

Похожие:

Элементы комбинаторики icon№8. Элементы комбинаторики и теория вероятностей
В каждой из них требуется подсчитать число возмож­ных вариантов осуществления некоторого действия, ответить на вопрос «сколькими...
Элементы комбинаторики iconСамостоятельная работа по теме: «Элементы теории вероятностей. Элементы математической статистики»
В соревнованиях по лёгкой атлетике участвуют спортсменов из Чехии, спортсмена из Франции, спортсменов из Германии, 6 из России. Порядок,...
Элементы комбинаторики iconКомбинаторные задачи и основные методы их решения
Распространенными задачками комбинаторики являются задачи о числе размещений, о числе перестановок, о числе сочетаний и задачи, связанные...
Элементы комбинаторики iconКриминалистическая характеристика преступления: понятие, значение элементы, виды
Тема: «Криминалистическая характеристика преступления: понятие, значение элементы, виды.»
Элементы комбинаторики iconЭлементы математической логики
Утверждение, противоположное некоторому высказыванию, записывается и читается «не А»
Элементы комбинаторики icon1. азимут магнитный
Схематический чертеж участка местности, на котором нанесены элементы ситуации и рельеф – абрис
Элементы комбинаторики iconПеречень вопросов по дисциплине
...
Элементы комбинаторики icon1. Понятие и элементы акциза
Это делает косвенные налоги, которые лучше было бы назвать незаметными, любимым детищем правительств
Элементы комбинаторики iconТесты по физиотерапии 1 Социальная гигиена и организация физиотерапевтической службы
В определение общественного здоровья, принятое в воз, входят элементы, исключая
Элементы комбинаторики icon1. Назначение, технические данные, основные элементы конструкции и условия работы узла
Нормы межремонтных периодов среднего, текущего ремонтов и технических обслуживаний




База данных защищена авторским правом ©refnew.ru 2022
обратиться к администрации

    Главная страница
Контрольная работа
Курсовая работа
Теоретические основы
Методические указания
Лабораторная работа
Методические рекомендации
Практическая работа
Рабочая программа
Общая характеристика
Учебное пособие
Теоретические аспекты
История развития
Пояснительная записка
Дипломная работа
Самостоятельная работа
Общие положения
Методическая разработка
Экономическая теория
Физическая культура
Общие сведения
Методическое пособие
Направление подготовки
Исследовательская работа
Федеральное государственное
Организация работы
Теоретическая часть
реакция казахского
Усиление колониальной
Экономическая безопасность
Общая часть
государственное бюджетное
Управления государственных
Техническое задание
Образовательная программа
программное обеспечение
Конституционное право
Общие вопросы
прохождении производственной
Обеспечение безопасности
Российская академия
Основная часть
Выпускная квалификационная
Автономная некоммерческая
Техническое обслуживание
Правовое регулирование
Понятие сущность
История создания
Математическое моделирование
курсовая работа
Государственное регулирование
муниципальное управление